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Abstract
The determination of the eigenenergies of a quantum anharmonic oscillator
consists merely in finding the zeros of a function of the energy, namely the
Wronskian of two solutions of the Schrödinger equation which are regular
respectively at the origin and at infinity. We show in this paper how to evaluate
that Wronskian exactly, except for numerical rounding errors. The procedure
is illustrated by application to the gx2 + x2N (N a positive integer) oscillator.

PACS number: 03.65.Ge

Quantum anharmonic oscillators have been frequently used in different branches of physics
to simulate a great variety of situations and to explain a multitude of phenomena. Apart from
this, since the publication of the seminal papers by Bender and Wu [1] and by Simon and Dicke
[2] showing the failure of the Rayleigh–Schrödinger perturbation method, they have served to
test plenty of approximate methods of solution of the Schrödinger equation. Papers dealing
with the most recently proposed methods [3] contain references to older ones, which we omit
for brevity. It seems, however, to have been passed unnoticed that an exact procedure exists
to obtain a quantization condition that gives the eigenenergies as zeros of an easily calculable
function. The idea is the same as that exploited in the solution of the Schrödinger equation
for the harmonic oscillator or the Coulomb potential, although the procedure is slightly more
tricky than in those two simple cases.

The starting point is the Schrödinger equation written as a second-order differential
equation free of first-derivative terms. Such an equation is satisfied by the wavefunction, in the
case of an even one-dimensional anharmonic oscillator, or by the reduced wavefunction, if one
is considering an isotropic D-dimensional oscillator. A solution ureg of the differential equation
physically acceptable at the origin can be immediately obtained as a power series of the
variable. Two other solutions u(1) and u(2), characterized by their behaviour at large distances,
can also be considered. To be specific, let u(1) represent the solution going exponentially to
zero as the variable increases, whereas u(2) corresponds to an exponentially diverging one.
Since u(1) and u(2) are independent, ureg can always be written as a linear combination of them
with coefficients, called connection factors, which depend on the energy and on the parameters
of the potential. For a generic value of the energy, both connection factors are different from
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zero and ureg is not a physical solution because of its behaviour at infinity. The eigenenergies
are then determined by requiring the cancellation of the connection factor multiplying u(2).

The connection problem for a differential equation with two singular points (let us say,
one at the origin and the other at infinity) was discussed by Naundorf [4]. He considered
the case of one of the singular points (that at infinity, for instance) being irregular of integer
rank R > 0 and the other one being either irregular of integer rank r > 0 or regular (r = 0).
Here we are interested in this last case. Naundorf gave a procedure consisting of obtaining
2R independent formal power series, with an integer index running from −∞ to +∞, having
well-defined asymptotic behaviours, and whose coefficients can serve as a basis in the 2R-
dimensional space of solutions of the recurrence obeyed by the coefficients of ureg. To obtain
such basis, Naundorf replaces, in the known expressions of u(1) and u(2) [5], the exponential
term determining their respective asymptotic behaviours by R independent formal expansions
of the type of Heaviside’s exponential series. Multiplication of those formal expansions by
the Taylor series of the rest of the exponential terms and the descending power series in
u(1) and u(2) produces 2R formal expansions whose coefficients obey the above-mentioned
recurrence, i.e., the required basis. Comparison of 2R consecutive coefficients of the power
series expression of ureg with the analogous coefficients of the elements of the basis leads to
a system of 2R linear equations whose solution allows one to obtain the connection factors.
That procedure has been applied to the solution of several physical problems, such as the
hydrogen atom with fine structure [6], the quarkonium [7], the spherical Stark effect in the
hydrogen atom [8] or the quartic and sextic anharmonic oscillators [9].

The method suggested here is related to Naundorf’s one insofar as it also rests on
the vanishing of one of the connection factors and makes use of Heaviside’s exponential
series to obtain formal expansions, but differs from Naundorf’s method in the procedure of
computation: instead of following the steps detailed in the preceding paragraph, we benefit
from the fact that the connection factor multiplying u(2) is given by the quotient of Wronskians
W[ureg, u

(1)]/W[u(2), u(1)] and, since the denominator does not vanish, the quantization results
from the fulfilment of the condition

W[ureg, u
(1)] = 0. (1)

To implement this condition, we need suitable expressions of ureg and u(1). The series
expansion mentioned above is adequate to represent the first of these solutions. For the second
one a closed expression does not exist, in general, but a formal (asymptotic) expansion can be
easily obtained by substitution in the differential equation. Then it is trivial to write a formal
expression of the Wronskian and to require its cancellation.

To illustrate the method, let us apply it to the determination of the eigenenergies of the
one-dimensional anharmonic oscillator represented by the potential

V (x) = gx2 + x2N, N a positive integer. (2)

This problem has been tackled by several authors [10–12] by using different approximations.
We discard the trivial case N = 1. The cases N = 2 (usually referred to as quartic oscillator)
and N = 3 (sextic) can be easily solved following the steps we will detail, but the resulting
equations do not fit in the general form given below. Therefore, we assume N � 4. The
Schrödinger equation (in adequate units for the variable x and the energy E)(

− d2

dx2
+ gx2 + x2N

)
u(x) = Eu(x), (3)

admits solutions, regular at the origin, of the form

ureg(x) =
∞∑

n=0

anx
n+ν, a0 �= 0, (4)
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with ν = 0 (even states) or 1 (odd states). Alternatively, two independent solutions, u(1) and
u(2), with asymptotic expansions (for x → +∞)

u(j)(x) ∼ exp

[
α(j)

N +1
xN+1

]
xµ(j)

∞∑
m=0

h(j)
m x−m, h

(j)

0 �= 0, j = 1, 2, (5)

can also be considered. Substitution of this formal expansion in (3) gives for the exponents

α(1) = −1, µ(1) = µ ≡ −N/2,

α(2) = +1, µ(2) = µ ≡ −N/2,
(6)

and for the coefficients

2α(j)mh(j)
m = (m−N/2)(m−N/2−1)h

(j)

m−N−1 + Eh
(j)

m−N+1 − gh
(j)

m−N+3. (7)

Instead of computing directly the left-hand side of (1), let us introduce two auxiliary functions

vreg(x) = exp(xN+1/(N + 1))ureg(x), (8)

v(1)(x) = exp(xN+1/(N + 1))u(1)(x), (9)

which obey the differential equation

d2v

dx2
− 2xN dv

dx
+ (E − gx2 − NxN−1)v = 0, (10)

and whose Wronskian satisfies

W[vreg, v
(1)] = exp(2xN+1/(N + 1))W[ureg, u

(1)]. (11)

Now, by using the series expansion

vreg(x) =
∞∑

n=0

bnx
n+ν, b0 �= 0, (12)

with coefficients given by the recurrence

(n + ν)(n + ν − 1)bn = −Ebn−2 + gbn−4 + 2(n − N/2 − 1 + ν)bn−N−1, (13)

and the asymptotic expansion

v(1)(x) ∼
∞∑

m=0

h(1)
m x−m+µ, (14)

one obtains for the left-hand side of (11) a formal expansion

W[vreg, v
(1)] ∼

∞∑
k=−∞

γkx
k−1+ν+µ, (15)

with coefficients

γk =
∞∑

m=0

(−2m − k − ν + µ)bm+khm. (16)

A similar expansion can be obtained for the right-hand side of (11) by recalling Heaviside’s
exponential series

exp(t) ∼
∞∑

n=−∞

tn+δ

�(n + 1 + δ)
, (17)
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introduced by Heaviside in the second volume of his Electromagnetic Theory (London, 1899)
and probed by Barnes [13] to be an asymptotic expansion for arbitrary δ and |arg(t)| < π . Let
us construct N + 1 expansions

exp(2xN+1/(N + 1)) ∼ EL ≡
∞∑

n=−∞

(2xN+1/(N + 1))n+δL

�(n + 1 + δL)
(18)

of the type (17) with appropriate choices for δ,

δL = (ν + µ + L)/(N + 1), L = 0, 1, . . . , N. (19)

It is evident that, for any set of constants βL (L = 0, 1, . . . , N) restricted by the condition

W[ureg, u
(1)] =

N∑
L=0

βL, (20)

one has

exp(2xN+1/(N + 1))W[ureg, u
(1)] ∼

N∑
L=0

βLEL. (21)

If, according to equation (11), this formal expansion has to coincide with that in (15), the
constants βL must be

βL = �(n + 1 + δL)

(2/(N + 1))n+δL
γkL

, kL = n(N + 1) + 1 + L, (22)

where the integer n can be chosen at will. Substitution of those values in (20) allows one to
write the quantization condition (1) in the final form

N∑
L=0

�(n + 1 + δL)((N + 1)/2)L/(N+1)γkL
= 0. (23)

We have used the last expression of the quantization condition to find the lowest
eigenenergies of the anharmonic oscillator (2) for different values of the coupling parameter g

and four different choices of N. In the computation, we have used a FORTRAN program with
double precision. The results are shown in tables 1 to 4.

The procedure presented above assumes the capability to compute the N+1 coefficients γkL

(L = 0, 1, . . . , N) by summation of the series in (16). We have not yet proved rigorously the
convergence of such series, albeit extensive numerical explorations guarantee its convergence
for sufficiently large k, i.e., for n, in equation (22), above a certain threshold which depends
on the values of the coupling parameter g and on the energy. Moreover, those explorations
show that, the larger n is taken, the faster becomes the convergence. Investigations tending to
elucidate that question are currently in progress.

Besides the eigenenergies, our method determines also, in principle, the eigenfunctions.
In the example considered, they are given by equations (8) and (12). Nevertheless, although
the series in (12) converges for all finite x, it cannot be used safely for large values of x, unless
a considerable number of digits are maintained in the successive arithmetical operations.
Certainly, the asymptotic expansion (5) can be used for sufficiently large values of x (above
about 5 units). But the advantage of this procedure over the conventional numerical integration
of the Schrödinger equation is not clear, especially if one needs the normalized wavefunction
for a large number of points.

To facilitate understanding the method, we have chosen above a very simple example: a
one-dimensional anharmonic oscillator with only two terms in the potential. The procedure is
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Table 1. The four lowest eigenenergies of the oscillator (2), for N = 4 and several values of g.
The energies E0 and E2 correspond to even states (ν = 0 in (4)); E1 and E3 to odd ones (ν = 1).

g E0 E1 E2 E3

−20 −15.627 817 90 −15.603 428 43 −1.997 596 74 0.049 137 69
−10 −3.898 942 14 −3.325 413 35 3.264 150 45 8.822 126 29
−1 0.935 278 62 4.113 468 27 9.490 089 84 16.491 632 53
−0.1 1.197 981 14 4.692 996 58 10.169 682 29 17.258 079 61

0 1.225 820 11 4.755 874 41 10.244 946 98 17.343 087 97
0.1 1.253 406 43 4.818 457 27 10.320 150 25 17.428 061 87
1 1.491 019 90 5.368 778 06 10.993 737 34 18.191 100 02
10 3.212 964 74 9.868 891 92 17.200 021 66 25.523 114 99
20 4.487 415 20 13.545 432 09 22.894 307 80 32.782 471 04

Table 2. The four lowest eigenenergies of the Hamiltonian (2), for N = 5 and several values of g.

g E0 E1 E2 E3

−20 −11.566 301 47 −11.458 546 77 0.564 947 00 4.907 290 85
−10 −2.837 826 75 −1.830 754 83 4.909 461 47 11.942 792 56
−1 1.032 058 34 4.515 333 89 10.486 979 85 18.454 644 82
−0.1 1.273 081 85 5.040 588 36 11.087 624 65 19.115 376 34

0 1.298 843 70 5.097 876 53 11.154 318 20 19.188 809 56
0.1 1.324 412 24 5.154 953 87 11.220 994 52 19.262 244 08
1 1.546 263 51 5.659 337 72 11.819 967 88 19.923 103 57
10 3.217 117 08 9.932 293 22 17.515 895 63 26.434 508 76
20 4.486 235 13 13.553 292 64 22.992 318 28 33.193 547 64

Table 3. The four lowest eigenenergies of the Hamiltonian (2), for N = 6 and several values of g.

g E0 E1 E2 E3

−20 −9.366 071 77 −9.130 105 87 2.010 354 59 7.975 546 84
−10 −2.241 874 09 −0.870 044 33 6.121 596 77 14.165 128 36
−1 1.113 699 83 4.844 702 02 11.281 306 98 19.999 879 59
−0.1 1.339 499 07 5.333 472 17 11.831 812 76 20.595 393 82

0 1.363 779 71 5.386 942 02 11.893 009 08 20.661 637 60
0.1 1.387 865 79 5.440 245 56 11.954 205 20 20.727 894 95
1 1.597 990 50 5.912 646 17 12.504 708 42 21.324 741 09
10 3.224 418 73 10.006 304 19 17.831 647 30 27.278 764 98
20 4.486 801 92 13.570 820 13 23.113 716 63 33.632 812 10

equally applicable to isotropic D-dimensional oscillators with any number of integer powers
of the radial variable in the potential and for any value of the D-dimensional ‘angular
momentum’. It is also applicable, of course, to easier problems. Let us consider, for instance,
three anharmonic oscillators algebraically solvable, namely, the Pöschl–Teller, the modified
Pöschl–Teller and the Morse potentials. Their exact solution can be found in [14], whose
notation we adopt. In what follows, we concentrate on obtaining, by our procedure, the
eigenenergies of the bound states. But, since the reflection and transmission coefficients are
trivially related to the connection factors, our method is also useful for calculating phase shifts.
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Table 4. The four lowest eigenenergies of the oscillator (2), for N = 7 and several values of g.

g E0 E1 E2 E3

−20 −7.974 891 49 −7.590 267 06 3.059 161 12 10.192 691 95
−10 −1.847 462 4 −0.171 591 44 7.073 200 94 15.872 592 91
−1 1.183 937 65 5.123 291 91 11.939 119 91 21.262 040 13
−0.1 1.398 320 30 5.585 520 94 12.454 750 50 21.813 415 53

0 1.421 438 88 5.636 185 03 12.512 101 99 21.874 775 20
0.1 1.444 422 47 5.686 711 75 12.569 460 66 21.936 152 83
1 1.645 427 30 6.135 342 77 13.085 814 00 22.489 304 58
10 3.233 359 19 10.084 158 88 18.134 656 08 28.044 330 38
20 4.488 353 26 13.594 289 39 23.247 812 10 34.074 174 53

In the case of the Pöschl–Teller potential

V (x) = 1

2
V0

(
κ(κ − 1)

sin2(αx)
+

λ(λ − 1)

cos2(αx)

)
, V0 = h̄2α2

m
, κ, λ > 1, (24)

defined in the interval x ∈ [0, π/2], the Schrödinger equation can be written in the form

y(y − 1)u′′ +

(
1

2
− y

)
u′ +

1

4

(
k2

α2
− κ(κ − 1)

y
− λ(λ − 1)

1 − y

)
u = 0, (25)

in terms of a new variable

y = sin2(αx) (26)

and using, instead of the energy E, the parameter

k2 = 2mE

h̄2 . (27)

Equation (25) can be written as a hypergeometric one by means of the change of function done
in [14]. Then, it is immediate to write the connection factors and to obtain the quantization
condition. Nevertheless, let us ignore this fact and try to apply our method directly to
equation (25), to be solved between the two regular singular points y = 0 and y = 1. The
solution regular at y = 0 can be written as a power series

ureg(y) =
∞∑

n=0

any
n+κ/2, a0 �= 0, (28)

with coefficients given by the recurrence

n

(
n − 1

2
+κ

)
an =

((
n − 1 +

κ

2

)(
2n − 5

2
+ κ

)
− 1

4

(
k2

α2
+ κ(κ − 1) − λ(λ − 1)

))
an−1

−
((

n − 2 +
κ

2

)2
− k2

4α2

)
an−2. (29)

The solution regular at y = 1 can be immediately written if one realizes that the differential
equation (25) is invariant under the interchange{

y

κ

}
←→

{
1 − y

λ

}
and, therefore,

u(1)(y) =
∞∑

n=0

bn(1 − y)n+λ/2, b0 �= 0, (30)
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with coefficients given now by

n

(
n − 1

2
+ λ

)
bn =

((
n − 1 +

λ

2

)(
2n − 5

2
+ λ

)
− 1

4

(
k2

α2
+ λ(λ − 1) − κ(κ − 1)

))
bn−1

−
((

n − 2 +
λ

2

)2

− k2

4α2

)
bn−2. (31)

Both series in equations (28) and (30) are convergent for y ∈ (0, 1). We can, therefore,
write a convergent (not merely formal, as in the problem considered before) expansion of the
Wronskian. At the point y = 1/2, for instance, one has

W[ureg, u
(1)](y = 1/2) = − 1

2(κ+λ)/2

(( ∞∑
n=0

an

2n

) ( ∞∑
m=0

(m + λ/2)bm

2m−1

)

+

( ∞∑
n=0

(n + κ/2)an

2n−1

) ( ∞∑
m=0

bm

2m

))
. (32)

Giving numerical values to κ and λ, one can check that the Wronskian vanishes whenever

k2

α2
= (κ + λ + 2n)2, n = 0, 1, 2, . . . , (33)

as it should be.
The modified Pöschl–Teller potential, defined for x ∈ (−∞, +∞), reads

V (x) = − h̄2

2m
α2 λ(λ − 1)

cosh2(αx)
, λ > 1. (34)

Instead of the (negative) energy E, we use the parameter

κ2 = 2m(−E)

h̄2 . (35)

Once again, the Schrödinger equation can be written as a hypergeometric one with adequate
changes of variable and function. The change of variable used in [14] maps the interval
(−∞, +∞) for the variable x onto [1, +∞) for the new variable. Here we prefer, however, to
make a different change of variable, namely

y = 1

cosh2(αx)
, (36)

in order to get the mentioned interval, where the differential equation has to be solved, mapped
onto [0, 1]. The Schrödinger equation then turns into

y2(1 − y)u′′ + y

(
1 − 3

2
y

)
u′ +

1

4

(
−κ2

α2
+ λ(λ − 1)y

)
u = 0. (37)

The regular solution at the regular singular point y = 0 can be written as a series

ureg(y) =
∞∑

n=0

any
n+κ/(2α), a0 �= 0, (38)

with coefficients obtainable by means of

n
(
n +

κ

α

)
an =

((
n − 1 +

κ

2α

)(
n − 1

2
+

κ

2α

)
− λ(λ − 1)

4

)
an−1. (39)
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Now we need to write the well-behaved solution at y = 1. Two independent expansions in
power series of 1 − y of the form

u(y) =
∞∑

n=0

bn(1 − y)n+µ, b0 �= 0, (40)

with

µ = 0 or µ = 1/2

and coefficients obeying the recurrence

(n + µ)

(
n + µ − 1

2

)
bn =

(
2 (n − 1 + µ)2 +

κ2

4α2
− λ(λ − 1)

4

)
bn−1

−
(

(n − 2+ µ)

(
n − 3

2
+ µ

)
− λ(λ − 1)

4

)
bn−2, (41)

are physically acceptable. Those solutions with µ = 0 and µ = 1/2 correspond, respectively,
to even and odd wavefunctions in the variable x. Choosing the point y = 1/2 to evaluate the
Wronskian of ureg and each one of those functions, one has

W[ureg, u](y = 1/2) = − 1

2κ/(2α)+µ

(( ∞∑
n=0

an

2n

) ( ∞∑
m=0

(m + µ)bm

2m−1

)

+

( ∞∑
n=0

(n + κ/(2α))an

2n−1

) ( ∞∑
m=0

bm

2m

) )
. (42)

It can be checked numerically that the right-hand side of (42) becomes zero if,

for n = 0, 1, 2, . . . , 0 <
κ

α
=

{
λ − 1 − 2n for even states,
λ − 2 − 2n for odd states.

We arrive finally to the case of the Morse potential

V (r) = D(exp(−2αx) − 2 exp(−αx)), x = (r − r0)/r0, α > 0, (43)

exactly solvable for angular momentum l = 0. By introducing, as in [14], a new variable

y = 2γ

α
exp(−αx), (44)

and denoting

β2 = −2mEr2
0

h̄2 , γ 2 = 2mDr2
0

h̄2 , β, γ > 0, (45)

the Schrödinger equation becomes

y2u′′ + yu′ +

(
−β2

α2
+

γ

α
y − 1

4
y2

)
u = 0. (46)

This equation presents a regular singular point at the origin and an irregular one at infinity.
The physical solution, however, needs to be defined only between y = 0, corresponding to
x → ∞ (r → ∞), and y = y0 ≡ (2γ /α) exp(α), corresponding to x = −1 (r = 0). Such
physical solution must be regular at y = 0 and become zero at y = y0. The solution regular
at y = 0 can be given as a series

ureg(y) =
∞∑

n=0

any
n+β/α, a0 �= 0, (47)
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with coefficients obeying

n(n + 2β/α)an = −(γ /α)an−1 + (1/4)an−2. (48)

The other extreme of the interval of definition of the wavefunction, y = y0, is an ordinary
point. There are two independent solutions of the differential equation, both finite at y = y0.
But only the linear combination of them becoming zero at that point is physically acceptable.
Let us call it u(1). Now, following our procedure, we should impose the cancellation of the
Wronskian of ureg and u(1) at any point of [0, y0]. If we choose y = y0, it becomes

W[ureg, u
(1)](y = y0) = ureg(y0)u

(1)′(y0), (49)

and, since u(1)′ cannot vanish at y = y0, the quantization condition reads

ureg(y0) = 0, (50)

an expression that could have been obtained trivially, without having recourse to our method.
It is not difficult to see that, if one takes a0 = 1 in (47), one has

ureg(y) = yβ/α exp(−y/2)1F1

(
1

2
+

β

α
− γ

α
, 1 + 2

β

α
; y

)
, (51)

and the quantization condition (50) coincides with that given in [14].
Unlike what happened in the case of potential (2), the numerical convergence of the

power series giving the solutions of the Schrödinger equation in the three last examples is
rapid enough to guarantee an accurate computation of the eigenfunctions. For instance, in
the case of the Pöschl–Teller potential, the series in (28) can be used for y � 1/2 and that in
(30) for y � 1/2, the coefficients a0 and b0 being determined by continuity at y = 1/2 and
normalization in the interval y ∈ [0, 1].
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[3] Zamastil J, C̆ı́z̆ek J and Skála L 2000 Phys. Rev. Lett. 84 5683

de Castro A S and de Souza Dutra A 2000 Phys. Lett. A 269 281
Müller M and Heiss W D 2000 J. Phys. A: Math. Gen. 33 93
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Álvarez G, Howls C J and Silverstone H J 2002 J. Phys. A: Math. Gen. 35 4003
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